COMPLETELY STEREOSELECTIVE SYNTHESIS OF ALL FOUR STEREOISOMERIC I-CARBAMOYLOXY-

1,3-ALKADIENES VIA ANTI-DIASTEREOSELECTIVE HOMOALDOL REACTION FROM ALDEHYDES

AND A SINGLE CARBON-THREE-UNIT

Ede van Hülsen and Dieter Hoppe*

Institute of Organic Chemistry, University of Göttingen, Tammannstraße 2, D-3400 Göttingen, FRG

Summary: Lithiation of both (Z)- and (E)-3-trimethylsilyl-2-propenyl N,N-diisopropyl carbamate 2 affords the (2E)-lithium compound 3. Aluminium- or titanium-mediated addition to aldehydes 4 gives (1E)- $(3R^*4S^*)$ -enol carbamates 7. A stereospecific Peterson elimination (borontrifluoride- or base-mediated) introduces the second double bond either with (3E)- or with (3Z)-configuration. So just by reagent selection for each of the two steps, (1E,3E)-, (1E,3Z)-, (1Z,3E)-, or (1Z,3Z)-dienes 8 -11, respectively, are prepared with stereoselectivities up to > 99.7 %.

1-Oxy-1,3-alkadienes are of considerable preparative value in cycloaddition reactions ¹⁾. Despite that, the access to configuratively pure members is rather limited ^{1,2)}. We report now on a set of simple and efficient methods for the synthesis of all possible geometric isomers of 1,3-alkadienyl N,N-diiso-propyl carbamates 8 - 11 from a given aldehyde 4. The three-carbon extension is based on our versions of anti-diastereoselective homoaldol reaction³⁾, utilizing metal derivatives of the 3-trimethylsilyl-2-propenyl carbamates 2, followed by stereospecific silanol eliminations ^{4,5)}.

 (\underline{E}) -2 is prepared ⁶⁾ from (\underline{E}) -trimethylsilyl-2-propenol⁷⁾ and disopropylcarbamoyl chloride; (\underline{Z}) -2 is obtained from the propargylic ester⁸⁾ Ia by lithiation and silylation via alkyne Ic (yield 90 %) and subsequent nickel-catalyzed <u>cis</u>-hydrogenation by the method of C. A. Brown⁹⁾, yield 68 %. The lithiation (n-butyllithium in hexane, TMEDA, in ether, 1 hour at -78 °C) of both (<u>E</u>)-or (<u>Z</u>)-2 forms the (2<u>E</u>)-anion 3, which was trapped by trimethylsilyl chloride to afford the (<u>E</u>)-olefin 12. Starting from (<u>Z</u>)-2, the topomerization of the double bond ¹⁰⁾ is already complete after 5 min. at -78 °C, hence identical results are observed no matter if (<u>E</u>)- or (<u>Z</u>)-2 or configuratively inhomogeneous starting material is used.

After exchange of lithium in $(2\underline{E})$ -3 with disobutylaluminium methanesulfonate ^{11,12)} (5,method A) or tris(dimethylamino)titanium chloride ^{13,14)} (6,method B), the addition of an aldehyde 4 proceeds with high <u>anti</u>-diastereoselectivity ^{12,13}) affording diastereomerically pure ¹⁵⁾ (1\underline{E})- or (1\underline{Z})-(3R*, 4\underline{S}*)-enolcarbamates ¹⁶⁾ 7, respectively, which are separated from side products by flash chromatography or recrystallization from pentane (see scheme and table). By stirring (\underline{E})- or (\underline{Z})-7 with excess of borontrifluoride etherate in dichloromethane (method C) at -78 °C, a (3\underline{E})-double bond is established, yielding pure (1\underline{E},3\underline{E})- or (1\underline{Z},3\underline{E})-dienes 8 or 10, whereas treatment of 7 with sodium hydride (in ether/THF, 0 °C; method D) gives rise to a (3\underline{Z})-double bond in (1\underline{E},3\underline{Z})- or (1\underline{Z},3Z)-dienes¹⁷⁾ 9 or 11 (see scheme and table). The diastereomeric purities of dienes 8a, 8b, 9a, 10b, 11a, and 11b, which are sufficiently volatile for capillary gaschromatographic analysis, were found to be > 99.7 %, here the limit of detection is <0.1 % for each isomer.

Altogether, the method provides a highly selective access to all the diastereomeric alkadienes 8 - 11, starting from a stereochemically inhomogenous precursor, since a stereoconvergent reaction step is placed before two stereodivergent steps.

In preliminary experiments, dienes 8 proved their suitability for Lewis-acid catalyzed Diels-Alder reactions. For instance, 8a and acrolein afforded (BF₃-etherate, dichloromethane, 8 h at -23 $^{\circ}$ C) the cyclohexene 13 as a single (racemic) diastereomer $^{18)}$ with 82 % yield.

4, 7-11	R	(<u>E</u>) -7 [b] method A	(<u>Z</u>) -7 [b] method B	8 [c] method C	9 [c] method D	10[d] method C	II [d] method D
а	н ₃ С-	75	82	98	93	91	98
				(>99 . 7)[e]	(>99 . 7)[e]	(99 . 2)[e]	(>99 . 7)[e]
b	H ₃ C	76	85	93	92	95	96
				(>99.7)[e,f]	(97.0) [9]	(> 99 . 7) [e]	(>99 . 7)[e]
С		80		80	98		
				(>95)[h]	(> 95)[h]		
d	(iPr)2N-0-0112	71			93		
					(>95)[h]		
е		75		73			
				(>95)[h]			
f	С ₆ Н₅СН₂О-С́Н-	79[i]			94		
	CH ₃				(> 95) [h]		

Table: Yields (%) of enol carbamates 7 and dienes 8, 9, 10, 11 [a].

[a] The purity is listed in parentheses. - [b] Yield after chromatographic purification. No isomers are detected in ¹³C-nmr spectra. - [c] With (<u>E</u>)-7. - [d] With (<u>Z</u>)-7. - [e] Determined by capillary gaschromatography on Carbowax 57 CB. - [f] The equal result was obtained with crude (<u>E</u>)-7b. - [g] Contains 3.0 % of **8b** which origins from 3 % of (<u>E</u>)-<u>syn</u>-7b, present in the batch used for this experiment (¹³C-nmr, tlc). - [h] No isomers are detected in ¹³C-nmr. - [i] Diastereomers.

<u>General procedures;</u> (<u>E</u>)-3: To 5.0 mmol (<u>E</u>)- or (<u>Z</u>)-2 and 5.0 mmol TMEDA in 15 ml ether at -78 $^{\circ}$ C 5.5 mmol n-BuLi in hexane is added slowly and the mixture stirred for 1 hour. <u>Method A;</u> (<u>E</u>)-7: 5.5 mmol 5 in tert.-butyl methyl ether (0.5 molar, prepared from DIBALH in hexane ¹¹) is added to the solution of (<u>E</u>)-3, followed by 5.0 mmol of aldehyde 4 at -78 $^{\circ}$ C. The mixture is stirred for 1 h and worked-up with aqueous K-Na-tartrate solution. <u>Method B;</u> (<u>Z</u>)-7: 5.5 mmol 6 in hexane ¹⁴) is added to the solution of (<u>E</u>)-3 at -78 $^{\circ}$ C, followed by 4 after 1 h at -78 $^{\circ}$ C. Stirring is continued for 4 h and the reaction mixture worked-up as usual with aqueous 1N: H₂SO₄.

<u>Method C</u>; 8 or 10: A 0.3 molar solution of (<u>E</u>)-7 or (<u>Z</u>)-7 in dichloromethane is stirred with 2.5 equiv. of BF₃-etherate at -78 $^{\circ}$ C for 15 h and worked-up with aqueous NaHCO₃-solution. <u>Method D</u>; 9 or 11: A 0.3 molar solution of (<u>E</u>)-7 or (<u>Z</u>)-7 in ether/THF (1:1) is stirred with 2.5 equiv. of NaH for 3 h at 0 $^{\circ}$ C followed by cautious aqueous work-up.

 $Cb = C - N(iPr)_2$ R-CEC-CH2-OCD 1a R = H<u>b</u> R = Li \underline{c} R = SiMe₃ Scheme 1 Me₃Si . ОСЬ Me₃Si ÒСЬ (*Z*)-<u>2</u> (*E*)-<u>2</u> n- BuLi Me₃Si 3 Ò. N(iPr) 2. R-CH=0 (4) 1. (Me ₂N)₃TiCl (<u>6</u>) 1. (iBu)₂AlOSO₂CH₃ (<u>5</u>) ÕН ,0СЬ R Me₃Ši Me₃Ŝi ÒСЬ (E)-<u>7</u> (Z)-<u>7</u> +NaH + BF3 + BF3 +NaH _0Cb 0СЬ R Ŕ ÒСЬ ÒСЬ <u>11</u> <u>10</u> 9 8 0 0-C-N(iPr)₂ SiMe₃ Me ₃Si H₃C■ Ó-C-N(iPr)₂ Ö CH=0 <u>13</u> <u>12</u>

413

Acknowledgements: Financial support of this work by Deutsche <u>Forschungsgemeinschaft</u> and <u>Fonds</u> der Chemischen Industrie is gratefully acknowledged.

- Reviews: M. Petrzilka, J. I. Grayson, <u>Synthesis</u> 1981, 753; S. Danishefsky, <u>Acc. Chem. Res. 14</u>, 400 (1982).
- For more recent work and references see: A. K. Forrest, R. R. Schmidt, <u>Tetrahedron Lett.</u> 25, 1769 (1984); see also ref. 18.
- Review: D. Hoppe, <u>Angew. Chem.</u> 96, issue 12 (1984), <u>Angew. Chem., Int. Ed. Engl.</u> 23, issue 12 (1984).
- 4) Review: E. W. Colvin, Silicon in Organic Synthesis, Butterworth, London 1981, p. 141.
- 5) Synthesis of 1,3-alkadienes by similar strategies, which control the configuration of only one double bond, see: D. J. S. Tsai, D. S. Matteson, <u>Tetrahedron Lett.</u> 22, 2751 (1981); F. Sato, Y. Suzuki, M. Sato, ibid., 23, 4589 (1982); M. T. Reetz, B. Wenderoth, ibid. 23, 5259 (1982); Y. Ikeda, K. Furuta, N. Meguriya, N. Ikeda, H. Yamamoto, J. Am. Chem. Soc. 104, 7663 (1982). Synthesis of (1E, 3 Z)- or (1E, 3E)-1-(trimethylsilyl)-1,3-alkadienes, see: T.-H. Chan, J.-S. Li, J. Chem. Soc., Chem. Commun. 1982, 969; F. Sato, H. Uchiyama, K. Iida, Y. Kobayashi, M. Sato, ibid. 1983, 921.
- a) D. Hoppe, R. Hanko, A. Brönneke, F. Lichtenberg, Angew. Chem. 93 (1981) 1106; Angew. Chem., Int. Ed. Engl. 20 (1981) 1024; b) D. Hoppe, R. Hanko, A. Brönneke, F. Lichtenberg, E. van Hülsen, Chem. Ber. 118, in press (1985).
- 7) S. E. Denmark, T. K. Jones, J. Org. Chem. 47, 4595 (1982), and references.
- B. Hoppe, C. Riemenschneider, <u>Angew. Chem.</u> 95, 64 (1983); <u>Angew. Chem., Int. Ed. Engl.</u> 22, 54 (1983).
- 9) C. A. Brown, V. K. Ahuja, J. Chem. Soc., Chem. Commun. 1973, 553
- In contrast, the appropriate 2-butenyl derivatives are configuratively stable at these conditions, see ref. 6b, 11.
- D. Hoppe, F. Lichtenberg, <u>Angew. Chem.</u> 96, 241 (1984); <u>Angew. Chem., Int. Ed. Engl.</u> 23, 239 (1984).
- D. Hoppe, F. Lichtenberg, Angew. Chem. 94, 378 (1982); Angew. Chem. Int., Ed. Engl. 21, 372 (1982); Angew. Chem. Suppl. 1982, 961 972.
- R. Hanko, D. Hoppe, Angew. Chem. 94, 378 (1982); Angew. Chem., Int. Ed. Engl. 21, 372 (1982);
 D. Hoppe, A. Brönneke, Tetrahedron Lett. 24, 1687 (1982).
- 14) Reviews: M. T. Reetz, Top. Curr. Chem. 106, 1 (1982); B. Weidmann, D. Seebach, Angew. Chem. 95, 12 (1983); Angew. Chem. Int., Ed. Engl. 22, 31 (1983); D. Seebach, B. Weidmann, L. Widler in (R. Scheffold) Modern Synthetic Methods 1983, P. 217.
- 15) Diastereomers could not be detected by ¹H- and ¹³C-nmr or by tlc of the crude reaction mixture. Crude (E)-7b and (Z)-7a gave dienes 8b and 10a of > 99 % purity; which means that here the diastereoselectivities of homoaldol reaction are > 99 %. The easy separation of by-products from 7 by chromatography or crystallization avoids a purification on the stage of 8 - 11.
- 16) ¹H-nmr (CDCl₃, 80 MHz,6);(E)-7a: 7.00 (d, $J_{1,2} = 12$ Hz, H-1). 1.42 (dd, $J_{2,3} = 12$ Hz; $J_{3,4} = 6$ Hz, H-3); (Z)-7a: 7.08 (d, $J_{1,2} = 5.6$ Hz, H-1), 2.05 (dd, $J_{2,3} = 12$ Hz, $J_{3,4} = 5.6$ H, H-3).
- 17) ¹H-nmr (CDCl₃), 80 MHz, δ); 9a: 7.30 (d, $J_{1,2} = 11$ Hz, H-1), 6.18 (dd, $J_{2,3} = 11$ Hz, H-2), 5.90 (dd, $J_{3,4} = 12$ Hz, H-3), 5.38 (dq, $J_{4,5} = 6.8$ Hz, H-4). 10a: 6.87 (d, $J_{1,2} = 6.6$ Hz, H-1), 5.30 (dd, $J_{2,3} = 11$ Hz, H-2), 6.31 (dd, $J_{3,4} = 15.6$ Hz, H-3), 5.67 (dq, $J_{4,5} = 6.8$ Hz, H-4). 11a: 7.02 (d, $J_{1,2} = 6.4$ Hz, H-1), 5.55 (dd, $J_{2,3} = 11$ Hz, H-2), 6.29 (dd, $J_{3,4} = 11$ Hz, H-3), 5.45 (dq, $J_{4,5} = 6.8$ Hz, H-4). 8a (in C₆D₆, 200 MHz): 7.73 (d, $J_{1,2} = 12.4$ Hz, H-1), 6.04 (dd, $J_{2,3} = 10.4$ Hz, H-2), 5.82 (ddq, $J_{3,4} = 15.6$ Hz, $J_{3,5} = 1.0$ Hz, H-3), 5.43 (dq, $J_{4,5} = 7.2$ Hz, H-4).
- 18) The ¹H-nmr data are in good agreement with these of a similar compound (OAc for OCb, Et for Me in 13); see: B. M. Trost, S. A. Godleski, J. P. Genêt, J. Am. Chem. Soc. 100, 3930 (1978).

(Received in Germany 7 November 1984)